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The use of the new multigrid method for the numerical solution of the discretized 
Schradinger equation is discussed. A simple approach is chosen to circumvent the difftculties 
associated with the fact that the Schriidinger differential operator is not positive definite. The 
scheme is applied to a two-dimensional model problem which includes the essential features 
present in actual scattering problems. The results show that significant savings can be 
achieved both in computational work and core memory requirements. The multigrid method 
should greatly increase the utility of meshing procedures for solving the partial differential 
equations of quantum mechanics. 

1. INTRODUCTION 

The theoretical treatment of molecular collisions necessitates solving Schrodinger’s 
equation, either in a differential or integral form. In either case the most popular 
present procedure for its solution is the close coupling method f 1 I. In this approach, 
the wave function is expanded in a basis set over ail the collision coordinates except a 
relative translational variable. As well as being computationally expensive, there are 
additional difficulties with this approach for reactive, and especially for dissociative 
collisions. With these factors in mind, direct treatment of the Schrodinger partial 
differential equation (PDF) exhibits promising aspects [3, 171. The muItigrid (MG) 
method [ 4-7, 15 1 considered in this paper, is proving to be very successful for solving 
similar PDE problems in various engineering disciplines. We will demonstrate below 
that the procedure can be efficiently applied also to quantum mechanical problems. 

A wide class of methods for the solution of partial differential equations is based 
on discretization of the field variables, such as provided by the finite difference or the 
finite element methods 121. A major practical difficulty is related to the large size of 
the resulting algebraic equations, These systems are banded and sparse (i.e., only a 
small number of nonzero elements exist in the band). Hence, significant savings can 
be achieved by accounting for this property even within a traditional direct solver 
such as Gauss elimination. Indeed, the computational effort involved using a full 
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N x N matrix is O(4N3/3) additions, while in a scheme, making explicit use of the 
bandedness of the matrix, the operations count is 0(4B*N), where B is the half-width 
of the band.’ If d is the dimensionality of the space, and n the average number of 
discrete values for each coordinate, typically one has N = O(n”) and B = O(N’ ’ “). 
Hence the computational effort for the direct solution of the algebraic equations 
resulting from the discretization of the PDE is O(n”“-‘). It is seen that even with a 
modest number such as n = 10. the computational effort in L. 2.. 3-, and 4- 
dimensional spaces, are in the ratios 1 : lo3 : 10’ : 10’. Clearly, the increase of the 
computational work with dimensionality by direct methods is quite dramatic. This 
makes problems with more than three coordinates prohibitive, even with the most 
sophisticated computers and these conventional numerical methods. 

In classical field theories we have d < 3, and in this case direct solutions are 
feasible, although leading to large size problems. It is clear, however, that for 
quantum mechanical problems in higher dimensional spaces direct solutions through 
discretization of the Schriidinger equation are presently impossible. This 
consideration is at the source of the close-coupling approaches 111 in scattering. 

The situation described above pertains only to the direct solution of the algebraic 
equations. Indeed, even in two and three dimensions, for large problems involving 
several thousand unknowns, iterative methods are usually preferred [ 131. In order to 
guarantee convergence of the standard methods, a basic requirement is for the matrix 
of the linear algebraic system to be positive definite. For the Schrodinger operator 
H-E, this condition is not fulfilled, because it admits both oscillatory and 
nonoscillatory-type solutions (i.e., negative and positive eigenvalues, respectively). 
This consideration is true both for the finite difference and finite element 
discretizations, and precludes the straightforward use of the ordinary iterative 
schemes (e.g., Gauss-Seidel and its variations) for the solution of Schrodinger’s 
equation. Alternatively, the resulting sequence of successive iterates could be 
transformed into a convergent sequence [ 9, 111, or more elaborated iteration schemes 
could be considered in this case (see Section II). The price to be paid, however, is a 
slow rate of convergence and rather high computational work, although presumably 
still lower than that involved with direct methods. The remarkable aspect of the 
multigrid technique is that the comparable operations count for the solution of the 
algebraic equations resulting from the discretization of PDEs is O(N) (typically, 40N 
for Poisson problems 141) rather than O(N3-*‘“) by conventional methods. Thus. 
even for problems involving only a few hundred unknowns, the MG method already 
appears as more efficient than any other conventional approach. The technique offers 
computational efficiency and memory savings with possible dramatic consequences 
for the solution of the quantum mechanical and other chemical problems. Indeed, 
comparing with our previous example, the computational efforts in one, two, three, 
and four dimensions are now in the ratios 1 : 10 : 10’ : lo”, considering again the 
number of discrete points involved as N = 10“. 

In Section II a stability analysis is presented for the Gauss-Seidel iteration scheme, 

’ Additions are taken as units for operations count, see Section V. 
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applied to the finite difference discretization of the two-dimensional Schrodinger 
equation. The purpose is to illustrate the convergence or divergence of the iteration 
from the point of view of local Fourier analysis, and to provide the basis for 
understanding the MG scheme as applied to Schrodinger’s equation. Sections III and 
IV present a general discussion of the MG method, and the particular form used in 
our calculations. Results for an illustrative case corresponding to a two-dimensional 
model problem are reported in Section V. This case was specifically chosen in order 
to best demonstrate the main features and capabilities of the MG method as applied 
to Schrodinger’s equation. With the numerical tools outlined below and their 
exhibited success, the way is now open for applications to more sophisticated 
problems. The final conclusions are given in Section VI. 

II. STABILITY ANALYSIS 

The basic limitations of traditional iterative schemes, discussed above, can be 
visualized in a useful way by considering a local Fourier analysis of the error of the 
resulting iterates. To be specific, consider the case of the two-dimensional 
Schriidinger equation 

I -$+-$+K’ u(x,y)=O: I (2.1) 

where K2 = K’(x, y) = k2 - V(x, y) with k2 being the the energy and V(x, y) being 
the potential. K2 is assumed to be constant in the local stability analysis that follows. 
Using a live-point formula for the Laplacian operator, we can express (2.1) in the 
following way: 

where h is the constant spacing of the grid Gh, uj,,, = u(xj, y,), and 
Uj*l,m*l= U(Xj f h, y, f h). Rewriting Eq. (2.2) with D = K2h2 - 4 leads to 

Uj,m=-IUj+ 1.m + ui,rn+~ + Uj-1.m + uj.m-11lD. (2.3) 

From (2.3) we may also obtain the basic Gauss-Seidel iterative equation (n = 1, 2,...) 

The standard stability analysis for the iteration is based on considering the error 
y!“) = u!“) - u jm in the nth iteration, and following the growth or decay of its Fourier 
c&pon?ks from step n to step n t 1. It is readily seen that us: satisfies the same 
equation as (2.4), as a consequence of linearity 
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In order to perform a local Fourier analysis of the error in the scheme. we set 14 ] 

v,j$ =AF’exp[iq . ri,m]. (2.6) 

Here, q and A r’ are, respectively, the wave-vector and the amplitude of the particular 
Fourier component in the error, and rj,m the position vector at Gh. Significant 
simplification in the analysis is achieved by choosing an equally spaced Cartesian 
mesh, where we have 

ri.m = (hj, hm). 

Hence, the error in the wavefunction is written as 

vi$ =Ap’exp[iB,j + it?,m], 

where 

0, = q, h, 8, = qzh, 

The ratio of the amplitudes IA :” ’ “/Ab”)] being less than or greater than one, 
indicates, respectively, stability or instability of the iteration. Having this in mind, we 
substitute (2.6) into (2.5) to obtain the relevant quotient 

p(B,, 19,) = ]]exp(ie,) + exp(z%,)]/[D + exp(-i0,) + exp(-i0J]]. (2.7) 

The next step in the analysis, is to obtain upper bounds for ~(0,) 0,) in two regimes: 
high frequencies, where 7~12 < 1 Bi] < rr, and low frequencies, where 0 < / 13~1 < n/2. 
Before doing so, the range of values considered for h (and hence for 0) have to be 
restricted by considerations of physical resolution or numerical accuracy for the 
representation of u(x, y) through discretization. The parameter K* is the wave-vector 
squared, and on the nondimensional units used here we should have / K2 / h’ < 1, for a 
reasonable numerical resolution of the wave. 

The high frequency error components, those visible on Gh but not on G”‘, have a 
smoothing factor q given by 

Hence, they are always filtered after a few relaxation steps, independently of the sign 
and value of K2 (recall that D = K2h2 - 4). 
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For the low frequency components, however, we shall find that the errors will be 
attenuated or amplified, depending on the sign of K*. Indeed, Eq. (2.7) now leads to 

(2.9) 

from which we obtain. 

rl’ > 1, -4<D<-3 (K* > 0, K*h* < l), (2.10a) 

rl’ < 1, D < -4 (K* < 0). (2. lob’) 

Thus, inequality (2. lOa), which pertains to the range of oscillating solutions, indicates 
that the low frequency components of the error are amplified, and consequently, the 
iterative process diverges. Similarly, the second inequality (2.10b) predicts that for 
the case of nonoscillatory solutions (tunneling) those components are damped 
through the relaxations, although at a much slower rate than the high frequency ones. 
Hence, the sheme converges in this case as well. 

In summary, the preceding analysis clearly indicates that the low frequencies are 
responsible for both the eventual divergence or the slow convergence of the iterations, 
and that relaxation sweeps are very efficient for smoothing errors, i.e., for eliminating 
their high frequency components. More generally, these conclusions are actually valid 
for other Gauss-Seidel-type iteration schemes, the relevant feature being the local 
nature of the relaxation process. The possibly troublesome low frequency errors will 
be dealt with by a special procedure in the MG scheme below. 

III. THE MULTIGRID METHOD 

The MG method will be discussed here in connection with the numerical solution 
of PDEs, although it may also be applied to integral equations. In the conventional 
methods, the boundary value problem is first discretized in some way (e.g., finite 
elements or finite differences on a grid) and the resulting system of algebraic 
equations is then submitted to a numerical solver. In the MG method, however, 
discretization and solution processes are intermixed with and greatly benefit from 
each other [6]. Attention is concentrated on a cooperative solution process involving 
a sequence of uniform grids (G’ c G2 c ... c GM} with regularly varying mesh 
spacings, usually decresing in a gemetrical progression. Moreover, relaxation sweeps 
are performed over each grid, and coarse-to-fine grid and fine-to-coarse grid 
interpolation schemes (discussed below) allow for transfers from one grid to the 
other. It is critical to distinguish this approach from conventional relaxation in which 
we solve successively on finer grids, followed by comparison of the results for 
convergence behavior. 



428 GRINSTEIN, RABITZ. AND ASKAR 

The MG method has been presented in several reviews. Nevertheless, we present 
the main ideas in this paper for completeness, since most readers in the area of 
quantum mechanics are likely not familiar with the method. 

A. Two Level Analysis of the MG Method 

Having in mind the application of the method to Schrodinger’s equation, suppose 
the PDE of interest is 

Lu=O, (3.1) 

where L is a linear differential operator, and given boundary conditions (Dirichlet, 
Neumann, or mixed type) are specified. We attempt the solution of the discretized 
version of Eq. (3.1) at grid level k + 1 (k > 1) 

Lk+ IUkt 1 = 0 
9 (3.2) 

where Lkf ’ involves the grid G kt’ having a characteristic mesh spacing h, + , (see 
Fig. 1). At this point, and in order to avoid notational confusion, we list the various 
variables we shall be dealing with: 

u:exact solution to Lu = 0, 

uk+‘:exact solution to Lk+‘uk+’ = 0, 

Uk + ’ :approximation to u k + I, 

Vk + ’ :error of uk+‘, i.e., Vk+’ = Uk+’ - Uk+‘+ 

Moreover, we shall also be dealing with the quantities Ck, fik, and pk, defined in 
the same way for the associated inhomogeneous equation Lkik =fk, required at the 
correction stage discussed below, where the inhomgeneity fk will be seen to be a 

. . . . . . .Y 

h,.l 

Q l 0 l 0 l o- 

. . . . . . . 

. . . . . . . h, 

FIG. I. Diagram of two successive grids of the sequence. Points (0) belong to G”* ’ while points 0 
are the common points of Gk and Gk+‘. 
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function of Uk+ ‘. The interpolation operators allow for the transfer of values from 
one grid to the immediately coarser or finer grid. The fine-to-coarse interpolation 
operator from grid Gkt i to Gk is denoted by Ii+ i, and involves a weighted average 
over the points of the finer grid. Usually, and this is the case here, a limiting case of 
this weighted averaging is used, the so-called injection, by which the transfer involves 
retaining the same values at the common points of both grids (i.e.. 
gk(X)=I;+,gk+‘(X), t a common prints x, and for a given function g(x) defined on 
Gk and Gk+ ‘). C onversely, the coarse-to-fine interpolation operation from Gk to Gk’ ’ 
is performed through Ii+‘, and involves generating values at the additional points of 
the finer grid by a polynomial interpolation. 

We now proceed to deriving the basic equation and ideas to be used in the MC 
scheme. After a few relaxation sweeps on Eq. (3.2), we obtain an approximation Uk+ ’ 
to uk+’ and, since by definition Vk+ ’ is the corresponding error, the following 
equality holds: 

Lk+‘(Uk+’ + vk+‘)=o, (3.3) 

where only Ukt ’ is a known quantity at this stage. The problem is now that of 
reducing V kt’ further. According to the discussion in Section II, at this point Vk+ ’ is 
dominated by low frequency components (i.e., those with wavelengths large as 
compared to the mesh spacing) and reducing Vkt ’ by more relaxation sweeps is a 
slowly convergent process (or even impossible). Rather than proceeding with 
iterations, it is much more efficient to make a transfer to the grid Gk on which the 
basic spacing is the double of that of Gk+’ (i.e., h, = 2hk+ ,) where we solve, also by 
relaxation, for the corrections Vk. In order to obtain the equations for Vk, we apply 
the interpolation operator Ii+, on both sides of (3.3) to transfer values to the kth 
grid. We get 

It+ ‘CL k+1vk+‘)=-I~+,(Lkt’uk+‘), (3.4) 

where the right-hand side is known, and constitutes an inhomogeneous term for a 
suitable equation for Vk. On the other hand, I:+ ,L kt ’ Vk+’ involves the transfer of 
Lktl vktl to Gk, where it can be approximated quite well by LkVk, owing to the 
assumed smoothness of Vk. Hence, we can rewrite Eq. (3.4) as 

Lkvk=-Ik 
kt I 

Lktl ktl 
u . (3.5) 

Equivalently, by adding L “I: A , Uk+ ’ on both sides of Eq. (3.4), and changing 
variables from Vk to 

lzk=z;+,Uk+’ + p, (3.6) 

where I:+ , Ukt ’ is known, the equation to be solved is 

(3.7) 
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After obtaining a solution 0’ approximating U^& within a prescribed tolerance, we 
return to the finer grid G “’ The last approximation obtained for uk’ ‘, namely, . 

is then updated, by addition of the calculated correction y&t1 =If+lvk= 

zf+‘(ok - z;+, Ukc’). In this way, we get the new approximation U&,! at grid Gki ’ 

,r,rkil-uktl 
new - old + Z{“(O” -Ii+, L$&‘), 

where we note that in general Iit ‘Z:, , # 1. The iterations on Eq. (3.2) are now 
reinitiated taking Uf,;l as initial guess. 

This basic two-level analysis does not necessarily imply that the flow of the cycle 
initiates at Gkt ‘, or that Gkt i necessarily is the finest grid in the sequence. 
Furthermore, the solution of Eq. (3.7) itself is also approached in this way. The 
improvement of an approximate solution i?” to Eq. (3.7), obtained after a few 
iterations, is pursued by further reducing pk through the use of increasingly coarser 
grids, where the solution at G’, the coarsest, is obtained iteratively or directly 
depending on the nature of the problem. Since the operations count on the coarse 
grids is much smaller than that on the finest grid, this overall process leads to a very 
fast solver. The details of the implementation of these procedures are the subject of 
Section IV. We shall refer, specifically, to the MG algorithm known as the full 
approximation scheme (61, which involves the use of Eqs. (3.7) and (3.8) or similar 
ones with suitable modifications, at the correction stages. By recalling Eq. (3.6) it is 
seen that iZk can be seen as the representation on the coarser grid Gk of the sum (on 
grid Gkt ‘) of the basic approximation Uk” and its correction V” ‘. Hence, u^” 
represents on Gk the full current approximation, and this suggests the name for the 
scheme, as compared to the correction scheme 16 1 (also called Cycle C in 14 1) which 
involves operating with the corrections themselves through Eq. (3.5). 

B. Indefinite Problems 

In order to apply the MG method in the case of Schrodinger’s equation, the 
stability matter discussed in Section II has to be considered. As indicated, the 
Gauss-Seidel iteration scheme (as well as many other standard relaxation procedures 
which are variations of it) is divergent for a nonpositive definite operator such as that 
associated to Schrodinger’s equation. Hence, the MG method, which comprises such 
a relaxation method as one of its steps, is not directly applicable in this case. There 
are, however, several ways to circumvent this difficulty. First, any nonsingular 
indefinite operator can be changed into a positive definite one by “squaring” it. To be 
specific, suppose the problem to be solved is reduced to the algebraic equations 

A.x=b. 

Here, A is an indefinite matrix representing the indefinite operator discretization. 
Multiplying the equation by AT (or by At if the matrix is complex) yields a new 
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algebraic system for which the matrix A*A involved is guaranteed to be positive 
definite by construction.’ In this way, the multigrid method can be applied in its 
standard form. The price to be paid, however, is a matrix having twice the original 
bandwith (or equivalently a differential operator of twice the order) and thus, slow 
rates of convergence can be expected. A second possibility is to introduce as 
variables the components of the gradient of the wave function w along with the 
function v itself [ 121. This makes the operator definite and has the additional 
advantage of increasing the order of accuracy of the derivatives, as these are 
calculated directly. The price this time, is an increase in the number of unknowns. 
Nevertheless, since the computational effort grows linearly with the number of 
unknowns, the above increase is still outweighted by the savings brought by the MG 
method. Finally, the use of other convergent but rather elaborate iterative schemes 
[ 18 ] has recently been proposed 18 1. 

A simpler approach is used in this paper: the difficulty with divergence is avoided 
by performing a direct solution on the coarsest grid. The coarsest grid has to be tight 
enough in order to include a range of low frequency Fourier components in the error, 
associated with the negative eigenvalues, responsible for the divergence of the scheme. 
This process renders the entire MG cycle to be convergent. The approach was 
formally discussed by Brandt [4] and Nicolaides [ 161 who also reported numerical 
tests in the case of Helmholtz’s equation [5; 161 (i.e., K2 ( 0 and constant). In the 
case of SchrGdinger’s equation, however, there does not seem to exist criteria which 
will allow us to determine beforehand, how fine the coarsest grid has to be. Clearly, 
the eigenvalue spectrum of the associated matrix depends in a nontrivial way on the 
energy, the potential, and the boundaries and dimensions of the domain involved. 
This problem is analogous in many ways to deciding on a basis set size with close 
coupling or eigenfunction expansions. In practice, the divergence of the MG cycle 
because of an insufficiently tine mesh spacing on the first level, can be rapidly deter- 
mined, just by studying the numerical interplay between the coarsest grids. 

IV. THE FULL MG APPOXIMATION SCHEME 
FOR THE SCHR~DINGER EQUATION 

This scheme appears to be very suitable for the case of the Schr(idinger equation, 
particularly, because it can be easily adapted to deal with indefinite problems. In 
what follows, we shall describe a practical implementation of the algorithm outlined 
in the previous section, where the analysis of its operation was restricted to the case 
of only two grids. In the general case, we deal with a sequence of grids 
{G’, G’,..., GM}, G’ being the coarsest and GM the finest. If h, is the mesh spacing in 
G”, then h k+ 1 = h,/2, and on each grid line every point of Gk is every other point of 
Gk+ ’ (See Fig. 1). Moreover, h, depends on the discretization accuracy required for 

2 An alternative, suggested by A. Jameson (private communication), is to consider the system 

x = ATy and Ax = b, which yields AATy = b. 
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the solution of the differential equation. A classical flow starts on the coarsest grid 
G’ and involves the use of standard operation blocs outlined below. During the 
execution, each one of the blocks is used several times and accessed according to 
certain convergence criteria. In our description, we shall distinguish between the 
current finest grid level m (1 ,< m GM), i.e., the finest for which an approximate 
solution has this far been obtained, and the current operational grid level k 
(1 < k < m). At level m we shall be dealing with iterations for the homogeneous 

L”lP = 0, (4.1) 

while at level k < m (i.e., at the correction stages), the relaxation sweeps are done for 
an inhomogeneons equation 

Lk$ =fk (4.2) 

which coincides with Eq. (3.7) for k = m - I, and where f” is given in general by 
Eq. (4.18). 

The basic operation blocks are described below in a more or less static fashion. We 
shall then use the particular flow of the algorithm for the model problem in 
Section V, to illustrate how and when these six blocks are typically accessed. It is 
important to keep in mind when going through their description, that they are not 
necessarily accessed in sequential order. 

1. solution on the coarsest grid. We access this block at two stages: 

(i) at the initialization of the program, when we solve for u1 in 

L’u’ = 0, (4.3) 

(ii) at a correction stage, when at a operational level k = 1 < m, where we 
solve for u^’ in 

L’u^’ =I f’. (4.4) 

As discussed above, because of the nondefinitiveness of the differential operator, a 
direct solution of the corresponding algebraic equation has to be performed in both 
cases. This is accomplished, by using a Gauss elimination solver which takes 
advantage of the bandedness and sparseness of the matrices involved, with regards to 
both storage and computational procedures. 

After the solution process has been accomplished, a transfer of operations is made 
to either block 2 or 6 depending on whether this block was accessed at stage (i) or 
(ii), respectively. 

2. Interpolation to a new finer grid. The access to this block is undertaken 
whenever the solution U” at the current finest level m has been obtained within a 
prescribed tolerance E, (if m = 1, after the direct solution of Eq. (4.3)), and if m < M. 
If m = M the algorithm ends. By using a coarse-to-fine interpolation, an initial guess 
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is given for urn+‘, the solution of Lmt’Umtl = 0. The order of this polynomial inter- 
polation should be such as to ensure that the error of the quantities interpolated to 
the finer grid Gm+ i will be as amooth as possible. If p is the order of our 
discretization process (i.e., Lu - Lmtlu = O[(h,+i)“]) and n is the order of the 
differential operator, then the numerical resolution we expect for the solution at grid 
Gmtl is O((hm+,)“tp]. Th e self-consistency of the approximation scheme then 
requires the coarse-to-line interpolation to have at least that same order at this mesh 
refinement stage. For the Schrodinger equation, and if p = 2 as in Eq. (2.2) this 
requires at least cubic interpolation. This operation can be performed in a very 
efficient way by using the difference equation itself [ 141. To be specific, and having 
in mind our model problem in Section V, consider the two-dimensional Schrodinger 
diference equation on grid G”+ ’ obtained as a straightforward extension of Eq. (2.2) 

uj+ I,i + uj,i+ 1 + uj- 1.i + uj,i-i + 0j.iU.i i = 0, (4.6) 

where Dj,i = [k* - V(xj, y,)] hi,, - 4. 
The interpolation will be made up of three steps in this case. In the first, a simple 

injection is performed at the common points of G” and Gm+‘. By recalling Fig. 1 
(with k = m), it is seen that the additional points of G” + ’ for which values of Urn ’ ’ 
have to be generated fall into two categories, depending on whether their nearest 
common points (of G” and Gmt ‘) are at a distance fl h,, i or h,, , . By “rotating” 
Eq. (4.6) by 4Y and replacing h,, , by fl h,, I the values at the points of the first 
group are determined by the resulting equation, using the values at the common 
points. Finally, the values at the points of the remaining group are generated using 
Eq. (4.6) in its standard form. In preparation for transfer to block 3 below, the index 
for the new finest curent is changed from m to m + 1, and the operational level k is 
set equal to that new value. 

3. Relaxation sweep and estimate for the residual norm. This block is accessed 
at the operational level k < m with the purpose of improving the full curent approx- 
imation Uk (if k = m), or its representation 0’ at grid Gk (if k < m), by means of a 
relaxation sweep. Correspondingly, the iteration is done either for the homogeneous 
equation Lkuk = 0 or for the inhomogeneous one LkiZk = 2”. Since these equations 
differ only on their right-hand side (the boundary conditions are also the same), this 
operation can be performed by a routine defined for all grids with an inhomogeneity 
which is set equal to zero when k = m. A measure of the improvement obtained 
through the iteration is the residual norm ek, defined as follows: 

ek= IIRk = llLkUkII, k = m, 

= I(LWk -fkll, k < m, 
(4.7) 

where Uk and ok refer to the approximate solutions after the iteration, and the norm 
is a discrete version of a suitable continuous norm. In practice, a convenient choice is 
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the Euclidean norm which, in two dimensions and with equal mesh spacing in both 
directions, is defined by 

lp-“(x)/l = [ x ,rk(xi),2J’i2 . h,. (4.8) 
xicGk 

Moreover, an estimate for ek can be obtained at a reduced computational cost by 
evaluating the so-called dynamical residual norm, which uses quantities that are 
calculated anyhow during the iteration. In what follows we outline the steps involved 
in a typical sweep for the two-dimensional Schrodinger equation with Dirichlet 
boundary conditions. The equation is taken to be inhomogeneous in order to include 
the two relevant cases (i.e., k = m and k < m). Starting with the corresponding 
difference equation (cf. Eq. (4.6)) 

~,i+i,i + u,j,;+l + ui-1.i + ui.;- 1 +Di iUj;=fi,i, . , (4.9) 

where f -f and u^ = u if k < m, and f = 0 if k = m. we obtain the basic equation for 
the Gauss-Seidel iterative scheme considered here 

The terms Cj+ ,.i and ~7~,~+, are components of the starting approximation for u (CJ’ or 
(ik, before the iteration), while u~,~, uj , ,i, and u.~,~ , refer to those of the improved 
one. Operationally, the block involves the successive calculation of the quantities 

Ai.i=hfi.i-cj+ I.iAij.j+[ -Ujmj.i-Uj,i ,, (4.11) 

B,j,i = Ai.i - Di,iCi,i, (4.12) 

Ui,i = A/,i/Di.i. (4.13) 

where we note that the required “starting” values ui., and u, *i are fixed by the 
boundary conditions. The quantity B,i,i is called the dynamical residual, and gives an 
estimate for the actual residual 

Rj,i=fj.i-Uj+l,i-Uj,i+t -Uj-j,;-~j.i~, - D,i,i~j,i. (4.14) 

It is interesting to note in passing, that by comparison of Eqs. (4.12) and (4.13) it 
also follows that 

B,i,i = Dj.i(U,/,i - (/.i>. (4.15) 

As compared to the evaluation of RITi through (4.14) requiring a multiplication and 
five additions per grid point (also the cost of a relaxation sweep per grid point) the 
calculation of Bj,i is done at a reduced cost involving only a multiplication and one 
addition. 
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After the iteration has been completed and the residual norm e, estimated, we 
transfer to block 4 for a convergence test. 

4. Convergence test. At each level, with the exception of the first where the 
algebraic equations are solved exactly, to convergence tests are made: (a) the 
dynamic residual ek calculated in block 3 is compared with a prescribed tolerance cl,. 
(b) the convergence rate is checked by calculating the ratio of the dynamic residuals 
ek and 15~ for the present and preceding iterates at the same grid Gk, followed by 
comparison of ek/ck with a parameter r which is also prescribed. The choice of the 
parameters is discussed below. Particularly important is the choice of E,, the 
prescribed tolerance at the current finest grid level (k = m), which is taken to be 
comparable to the truncation error norm at level m. The choice of sk for k < m, 
which is relevant when correcting the current solution at level m, has a different 
definition given in the discussion of block 5. Depending on the results of these two 
tests, three possibilities exist: 

(i) If ek < .sk convergence is achieved, and we transfer to either block 2 or 6, 
respectively, depending on whether k = m or k < m. The distinction comes when 
noting that in the first case the calculations at the current finest grid are ended and 
we proceed to the next finer grid seeking a further improvement of the solution by 
mesh refinement. For k < m, although the calculations at Gk have converged, we have 
yet to complete the cycle achieving convergence at the current finest level within the 
tolerance E,. 

(ii) If ek > ck, while ek/Zk < r, the rate of convergence of the iterations is 
considered acceptable at the present grid and the transfer is again made to block 3 for 
a new sweep. 

(iii) If ek > ek and ek/ck > q, the convergence rate is considered unsatisfactory 
at the present grid, and we transfer the operations to the next coarser grid, as 
described in block 5. Having that transfer in mind, the value of the operational level 
index k is changed from k to k - 1. 

5. Coarse grid correction. Coming from block 4, and in order to proceed with 
the iterations at the new operational level k, we need three pieces of information: a 
starting approximation ok, the inhomogeneity Sk and the definition of a tolerance sk. 
The initial approximation ok is obtained by means of a fine-to-coarse interpolation 
from Gki * 

(4.16) 

where ok”=uk+l=Um ifk=m-1. 
In defining fk we follow the same line of reasoning as that leading to Eq. (3.7), 

except that instead of having the homogeneous equation (3.3) as the starting point, 
we now have, in general, the inhomogeneous one 

Lk+l(,fJk+‘+ ~k+I,=$k+l, (4.17) 

581/51/3-6 
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which of course coincides with (3.3) if k = m - 1. in which case f”’ ’ = 0. 
fk+’ = Vks I, and again, ok” = Uk’ ‘. By doing so, we get 

Finally, the tolerance fzk for the iterations at this level is taken to be a fraction of the 
last value for the dynamical residual norm ek+ , at the preceding operational level. 
That is, 

ck=6ek+lT (4.19) 

where 0 < 6 < 1 is also a prescribed parameter of the MC scheme. 
Having defined the problem for grid Gk, the operations are transferred to block 3, 

where a relaxation sweep is to be performed. 

6. Transfer of corrections to a finer grid. This block is accessed whenever 
conergence at an operational level k < m has been attained. We use the same 
arguments leading to Eq. (3.8) with suitable modifications (see discussion in block 5). 
!f 0:;’ is the solution at level k + 1 to be improved, and ok is the solution obtained 
at level k within the prescribed tolerance, we get the improved solution 6$!,’ through 
the equation 

Since we are dealing here with the coarse-to-fine interpolation or corrections, the 
requirements on the order of the polynomial interpolation involved are not as high as 
those in the mesh refinement stage (see block 2). In this case, usually linear-type 
interpolation is sufficient. 

In preparation for the transfer to block 3, where an iteration will be performed 
taking ot,‘,” as the starting approximation, the operational level index k is changed 
from k to k + 1. 

As discussed above, the flow of the program through the different grids is 
controlled by the parameters v and 6, while a knowledge is assumed of the truncation 
error norm at each level. That error clearly is not known, unless the exact solution to 
the continuous problem is given. An important byproduct of the full approximation 
scheme is that it allows for estimates of those errors, evaluated within the cycle of the 
program. Returning to the two-level analysis of Section IIIA, recall that after 
obtaining an approximate solution Urn at level m we seek an improvement at level 
m - 1 by solving Eq. (3.7), namely, 

The right-hand side of (3.21) can be regarded as the local truncation error at level 
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m - 1 relative to level m [6]. This foliows by comparison with the equation that 
defines the usual local truncation error at level m - 1, 

7 m-1 =;Lm-lu --Lo, (4.22) 

where u is the solution to the original continuous problem. For sufficiently small 
h,,,- , we expect 

P-’ rz a(h,-,)P, (4.23) 

where p is the order of approximation of the discretization process (p = 2 in our 
case), and a is independent of h, -, . Thus, we also expect to have 

r m RS (h,/h,,-JPt”-‘. 

Moreover, by comparison of Eqs. (4.21) and (4.22) it follows that 

(4.24) 

y-1 RI m N rm-’ - P, (4.25) 

and by recalling (4.23) we get 

P-’ =: fl - (h,,‘h,~,)p’l~‘~~-’ (4.24) 

which gives an estimate for the local truncation error at level m - I. By now using 
again (4.24), we finally get the desired estimate for level m 

7”’ = (h,/‘h,,- J/l 1 - (h,/h,- ,>“I r;-‘. 

The above analysis then suggests taking E, to be given by 

(4.27) 

(4.28) 

where fin- ’ is calculated by (4.18) and a is a suitable constant to be prescribed. A 
natural choice for a (perhaps not necessarily optimal) clearly is 

which for our case (h,/h,- r = f and p = 2) yields a = f. 
In executing the algorithm we must then choose three parameters: v, 6, and a. 

Criteria for determining optimal values for q and 6 are given in 141. Usually, q is 
taken to be equal to the smoothing factor (e.g., that given by Eq. (2.8)). In this way, 
the relaxation sweeps at each level are expected to do that part of the work for which 
they are efficient (i.e., filtering high frequency errors). In practice, however, the flow 
of the algorithm is not very sensitive to the precise choice for 9 and S. It is somewhat 
more dependent on that of a which actually fixes the accuracy that can be obtained 
in solving the discretized problem at each level. 

Finally, we note that MG cycles having fixed flows can be devised, with the entire 
flow prescribed in advance depending on input parameters but not on internal checks. 
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They would, of course, be preferred in order to avoid the evaluation of residual 
norms, and hence reduce the computational work f 7 1. It should be noted, however. 
that the choice of fixed flows may require extensive experience with the class of 
problems under consideration. 

V. A MODEL PROBLEM 

The following example is presented here in order to make concrete the use of the 
MG method, the magnitude of savings that can be achieved, and the order of 
accuracies that can be expected. Some details of a practical nature with regard to the 
application of the algorithm, will also be indicated. 

The problem consists in solving the two-dimensional stationary Schrijdinger 
equation 

I-V2 + V(x, y) 1 $!I(& y) = k2V/(s. y), 

where the potential is chosen as 

(5.1) 

on the rectangular domain (0 <x <X, 0 < y < Y] with the boundary conditions 

w(0, y) = w(X, y) = 0. t&c, 0) = y{x, Y) = sin x. 

The parameters used in the actual calculations were A 1 = 3, A, = 1, k = 1, x,, = 6.6, 
X ,,2 = 15.4, y,,, =Y~~= 1.5757c, 0:=4.93, A’== 7n, and Y= 3.1571. The potential 
V(x, y) is made up of a Gaussian hill of height A, and a Gaussian well of depth A z 
centered, respectively, at (x,i, y,,) and (xoz, y,,). The problem contains all the 
essential features that might cause numerical difficulties, and is quite typical of those 
that appear in scattering problems, with regions of waves and tunneling 
simultaneously present. The PDE (5.1) is discretized by a five-point finite difference 
scheme as in Eq. (2.2), the Gauss-Seidel relaxation scheme defined by Eq. (4. IO) is 
used for all iterations and the MG algorithm is the full approximation scheme 
discussed in Section IV. The switching parameters for the flow of the algorithm were 
chosen to be q = 0.6 (an upperbound to the smoothing factor as given by Eq. (2.9)), 
6 = 0.4 and a = f. In order to explicitly see what has happened in the actual 
execution of the program for our model problem, we present its concrete flow in 
Fig, 2. The grid-levels 1-4, with the number of intervals in the x and y directions as 
indicated in parenthesis, are those involved in the calculations. The numbers inside 
the squares indicate the number of iterations that were performed at each stage. The 
arrows indicate the succession of events. More specifically, the flow starts at level 1 
(m = 1) where a direct solution of the algebraic equations yields U’. The inter- 
polation Z: transfers U’ to the new current finest grid level 2 (pn is set equal to 2). 
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LEVEL I 
140.1m, 

LEVEL 3 
,wm. 72, 

LEVEL 4 
13m.1.41 

FIG. 2. Schematic diagram of the flow for the model problem. The number of relaxation sweeps at 
each level are indicated inside the squares. A thicker square indicates that the stopping criteria 
~~L”U’“II CC,,, at that level was satisfied. Stages at which the operation blocks are used: Block I: 0: 
Block 2: J (cubic interpolation); Blocks 3 and 4: Cl, 0; Block 5: T (injection of residuals); Block 6: 
1 (bilinear interpolation of corrections). The number of intervals at the corresponding grids arc 

indicated in the parenthesis (e.g., (40 x 18)) at each level. 

The approximation U* = 1: U’, thus obtained, serves as a first guess for a series of 
four iterations that are performed at this level. From this point, the flow returns back 
to level 1 (now a correction stage, with k = 1 < m = 2), since the rate of convergence 
is no longer satisfactory after four iterations. The process of transfering between 
levels 1 and 2 is repeated several times until we satisfy (at the thicker square with a 
number 3 inside) the stopping criteria in level 2 at the third iteration. At this point, 
the flow goes on to the third level (m is set equal to 3). Again, when the convergence 
rate becomes unsatisfactory at this level after six iterations, a correction is pursued at 
the next coarser grid. This takes the flow to level 2 (k = 2 < m = 3). After several 
transfers between levels 1 and 2 and eventually 3, convergence is attained at level 3 
(thicker both with a number 2 inside) after two iterations. Since convergence has been 
achieved at level 3, the flow goes onto level 4 (m is set equal to 4). The first time at 
this level the convergence rate becomes unsatisfactory after six iterations, and the 
flow goes to levels 3, 2, and 1, respectively. Eventually, at the end of the line, 
convergence at level 4 is also achieved after two iterations. Here the program ends. 

Table I presents a comparison of the computational effort by the MG and direct 
methods. The computational efforts are measured by the number of additions, 
counted as one unit, and multiplications and divisions, counted as three and nine, 
respectively. These appear as somewhat standard units for measuring computational 
effort [lo]. For the MG calculations, the operation count is done directly during the 
computations, including relaxation sweeps, interpolations, and direct solutions on the 
coarse grid.3 For the direct solver, the operations count is estimated by the formula 

(9 + 4B) BN = (9 + 4N”*) N3’2, 

’ Estimates for the computational work associated with traditional MG cycles involve only relaxation 
sweeps, which dominate most of the work (see, e.g., 141). In particular, the work in the first level is 
typically negligible. In our calculations, however, this is not the case, mainly because direct solutions are 
always required on the coarsest grid. 
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where, as before, N is the number of unknowns, and B is the half-bandwith of the 
matrix of the system of algebraic equations. This expression is obtained in a 
straightforward way by performing the actual operations count for a Gauss 
elimination solver involving a banded matrix. 

As mentioned before, Fig. 2 is a sketch of the actual cycle corresponding to the 
MG figures of Table I. A full thicker square indicates that the stopping criteria 
llLmUmll < E, was satisfied at that level. The accuracies in column 7 of Tabie I refer 
to these last stages. It must be appreciated that the direct solution of the equations at 
the fourth level, involving -45,000 unknowns, and even at the previous one with 
- 11,000 unknowns, is not feasible in core (on an IBM 308 1) with a banded matrix 
solver, because of memory requirements.4 The last column of the table gives the 
estimated factors of savings in work at each level. These factors are dependent on the 
model problem and also somewhat dependent on the particular flow of the MG cycle 
‘(note that only estimates can be given for the truncation error at each level). 
Nevertheless, the figures clearly indicate that the MG method can produce dramatic 
computational savings. Referring to the storage requirements for the MG method in 
Table I, it should be noted that they can be reduced by more efficient programming 
(see discussion on storage requirements for the MG algorithm in 17 1. The storage 
figures in Table I correspond to a code which followed the sample program in [4j 
with regards to the basic arrays involved, except for a relative increase of somewhat 
less than 50% in storage space (required to define the potential at each grid). 

A higher degree of optimization can still be expected, through the reduction of both 
computational work and storage requirements, by using adaptive discretization 16, 7 1. 
This would allow for efficient adaptation of the algorithm to the particular features of 
the potential and boundary conditions involved. These requirements are crucial, in 
particular, on the first level where direct solutions are to be performed. 

VI. DISCUSSION 

The computational work and core memory savings for realistic accuracies, as 
discussed and illustrated for the example of Table I, are quite encouraging. The 
multigrid method constitutes an extremely efficient procedure for solving 
Schrodinger’s equation in its original partial differential equation form, 

The problem of deciding on an optimal and robust scheme in order to deal with the 
nonde~niteness of the problem demands further study. The particular scheme used in 
this paper may not be efficient when relatively large domains and/or energies are 
involved, due to the requirements on the “tightness” of the coarsest grid to ensure the 
stability of the algorithm. The results of our numerical experiments indicated, in 
particular, that besides the usual requirements for numerical resolution of the 
discretization process, larger domains required finer meshes. This latter requirement 

’ The storage requirements for the noniterative block technique 117 1 are much less. However, the 
method involves more arithmetic computations per solution as compared to the banded matrix solver. 
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is not confined to the MC approach, but rather is inherent in physical problems 
exhibiting oscillating solutions for which point-wise approximations are sought j 19 I. 

The memory and computational time savings should open up larger classes of 
problems for accurate numerical solution. In this work the method is applied to the 
simple finite difference discretization of Schr~dinger’s equation. It can be coupled in a 
straightforward manner, with the more flexible finite element discretization 13 1. 
Furthermore, for the time-dependent Schrijdinger equation with implicit time- 
integration schemes, the method would be desirable solution procedure at the discrete 
time steps. 

Finally, we note that outside the realm of linear equations, the multigrid technique 
has also been used in conjunction with nonlinear problems. Hence, it would provide a 
viable procedure for the solution of nonlinear partial differential equations such as 
those of interest in chemical kinetics. 
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